


CLASIFICATION OF PLANTS

- Plants and their classification is based on **cellular structure, nutrition, and reproduction**.
- Plants are an essential component of Earth's ecosystems that are considered as **living things**. They are classified as members of the kingdom Plantae and are distinguished by their capacity to generate food on their own through a process known as **photosynthesis**. In this article, we will learn about several types of plant classification systems and their importance.

Classifying plants involves categorizing them into groups according to **their shared and unique characteristics**. Plants are categorized into several groups: **families, genera, orders, divisions, classes, and species**. This hierarchical structure facilitates communication and study among researchers regarding various plant species.

- [Angiosperms](#), blooming plants, and [gymnosperms](#), or non-flowering plants like conifers, are two examples of typical plant divisions.

Plant Classification

Basis of Classification System:-

Plants are classified based on the following:

- **Cellular Structure:** The **cellular structure** of plants can be used to classify them. The kinds of cells that comprise their tissues are meant by this. Like algae, plants can have **basic cell arrangements**, or like higher plants like **trees and flowers**, they can have more complicated structures with **specialized cell arrangements**.
- **Mode of Nutrition:** Several mechanisms of **nutrition** are used by plants to get nourishment. [**Photosynthesis**](#) allows certain plants, including [**algae**](#) and certain [**bacteria**](#), to make their own sustenance. Others take nourishment from their environment, including several types of mushrooms. Plant categorization benefits from knowledge about the sources and uses of nutrients.
- **Reproduction:** A crucial component in classifying plants is also how they reproduce. **Spores** are used by certain plants for **reproduction**, whereas **seeds** are used by others. Another factor taken into account when categorising plants is the existence or lack of specialised **reproductive organs, such as flowers**.

Classification of Plants Based on Lifecycle:-

According to their life cycle, plants may be divided into three major groups: **annuals, biennials and perennials**. A plant's life cycle is the length of time it needs to go through its whole reproductive cycle, from seed germination to seed production.

Annuals:-

These are plants whose life cycle is finished in a single growing season. Typically, they are herbaceous. Annual plants include plants like **corn, rice, wheat, and legumes**.

Biennials:-

The life cycle of these plants takes two years to finish. Normally, they are herbaceous plants. **Beetroot, carrots, cabbage, onions** are examples of **biennial plants**.

Perennials:-

These are long-lived plants, usually exceeding two years in age. Their distinctive texture is vegetal or woody. Perennials include popular plants including **lilies, dianthus, roses, and lavender**.

Taxonomic Classification of Plants:-

[**Plant Kingdom**](#) facilitates the organisation and study of the enormous diversity of plants by allowing scientists to comprehend these divisions based on **cellular structure, mechanism of nourishment, and reproduction**.

Coniferophyta (Gymnosperms):-

Gymnosperm plants, or **seed-bearing plants**, have naked seeds that is, they are not covered with fruit. Conifers, such as **pine trees**, belong to this category. Frequently possessing needle-like leaves, gymnosperms are highly suited to harsh conditions.

Anthophyta (Angiosperms):-

Angiosperms are flowering plants that **contain seeds inside of their fruits**. They are the most abundant and diversified class of plants on the planet. Angiosperms are essential to ecosystems because they give a variety of animals, including humans, food and places to live.

- **Monocotyledons:** A class of **flowering plants (angiosperms)** known as **monocotyledons**, or **monocots**, are distinguished by having seeds that have a single **cotyledon** (seed leaf) during **germination**. These plants belong to the broader class of flowering plants called **angiosperms**, which also includes a wide range of plants that generate seeds secured in fruits.
 - **Cotyledons:** The seeds of monocots only have **one cotyledon**, or seed leaf.
 - **Leaf Venation:** Monocots typically have **parallel veins** in their leaves.
 - **Roots:** **Fibrous roots** are common in monocots, forming a thick network.
 - **Stem Vascular Bundles:** The stem has **dispersed vascular bundles**.
 - **Floral Parts:** Typically, there are three **petals, sepals, and stamens** in a flower.
 - **Secondary Growth:** Monocots often do not generate wood because they do not have [secondary growth](#).
 -
- **Dicotyledons:** **Dicotyledons, or dicots**, are a class of angiosperms that bloom and are distinguished by having seeds that have two cotyledons, or seed leaves, as they germinate.
 - **Cotyledons:** The seeds of monocots have **two cotyledon**, or seed leaf.
 - **Leaf Venation:** Dicots typically have **reticulate veins** in their leaves.
 - **Roots:** **Taproot** are common in dicots, forming a thick network.
 - **Stem Vascular Bundles:** The stem has **ring shaped vascular bundles**.
 - **Floral Parts:** Parts of flowers are typically found in sets of four or five.
 - **Secondary Growth:** Dicots often develop back into larger plants by producing wood and expanding in circumference.

Importance of Plant Classification:-

Taxonomy, or the classification of plants, is important for a number of reasons, including practical uses in agriculture, medicine, and conservation as well as scientific study and teaching. The following are some main arguments in favour of plant classification:

1. **Biodiversity:** The vast number of **plant species** on Earth may be arranged systematically using the framework provided by plant categorization.
2. **Evolutionary Relationship:** The **evolutionary** links between various plant species can be better understood through classification.
3. **Agricultural Use:** Crop management in agriculture requires an understanding of **plant taxonomy**. Farmers may choose crops that are appropriate for a given environment and make educated decisions about managing diseases and cultivation techniques by having an extensive knowledge of crop taxonomy.
4. **Medicinal Use:** Many plants have therapeutic qualities, and classifying these plants aids in their identification and organisation.
5. **Conservation:** Classification of plants is essential to conservation initiatives. It facilitates the identification of vulnerable or endangered plant species, the comprehension of their ecosystems, and the use of conservation and preservation measures for biodiversity.