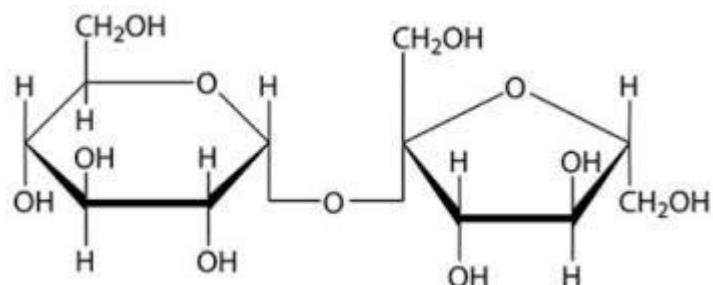


Carbohydrates:-

- Carbohydrates are organic compounds made up of carbon, hydrogen, and oxygen atoms, usually with a hydrogen to oxygen atom ratio of 2:1.
- They are one of the main types of nutrients and the most important source of energy for many organisms.

- **SIMPLE CARBOHYDRATES:** • Simple carbohydrates are organic compounds composed of one or two sugar molecules, known as monosaccharides and disaccharides.
- These carbohydrates are relatively small in size and are characterized by their quick digestion and absorption in the body, leading to rapid increases in blood sugar levels.
- There are two types of simple carbohydrates:
 - a) **Monosaccharides:** These are the simplest form of carbohydrates, consisting of single sugar molecules. Examples include glucose, fructose, and galactose.



Physical Properties: -

Solubility: Highly soluble in water due to hydrophilic nature.

- Taste: Generally sweet.
- State: Solid at room temperature.
- Crystalline Structure: Most are crystalline in nature. Chemical Properties:
- Reducing Sugar: They act as reducing agents (e.g., glucose).
- Isomerism: Exhibit structural isomerism (e.g., glucose and fructose).
- Ring Structure Formation: Exist in cyclic structures in aqueous solutions.

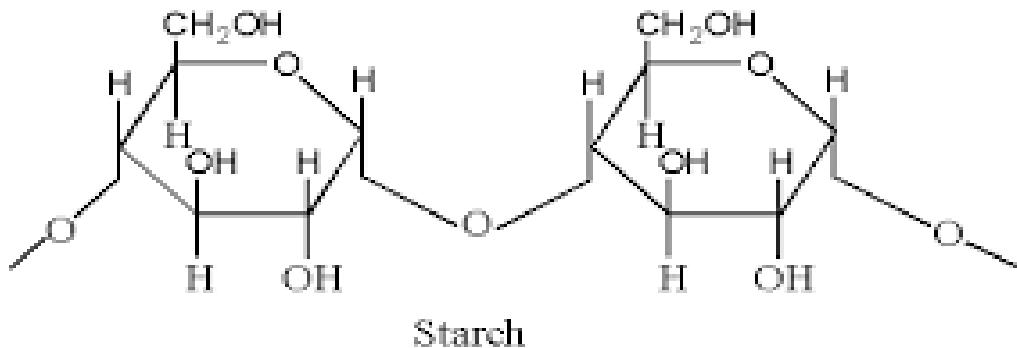
b) Disaccharides: These consist of two monosaccharide molecules linked together. Common disaccharides include sucrose (table sugar), lactose (found in milk), and maltose.

Physical Properties:-

Solubility: Generally soluble in water.

- Taste: Typically, sweet, varying in intensity.
- Physical Form: Solid at room temperature, often crystalline.
- Optical Activity: Rotate plane-polarized light; specific rotation depends on structure.
- Chemical Properties:
 - Glycosidic Bond Formation: Consist of two monosaccharides joined by a glycosidic bond.
 - Hydrolysis: Can be broken down into their monosaccharide units by hydrolysis.
 - Reducing and Non-Reducing Types: Some act as reducing sugars (e.g., maltose), while others like sucrose do not.

Reactivity:-


Less reactive than monosaccharides due to the involvement of their carbonyl group in glycosidic bond.

- Mutarotation: Exhibit mutarotation upon hydrolysis.
- Chemical Stability: More stable than monosaccharides but can participate in chemical reactions like Maillard browning.

COMPLEX CARBOHYDRATES: •

Complex carbohydrates are organic compounds composed of multiple sugar molecules (monosaccharides) linked together in long chains.

- These chains can vary in length and complexity, and they are also known as polysaccharides.
- This gradual release of energy makes complex carbohydrates an important source of sustained energy for the body.
- Polysaccharides: These are complex carbohydrates made up of long chains of monosaccharide units. They include starches, glycogen (the storage form of glucose in animals), and dietary fibers like cellulose.

Physical Properties:

Solubility: Generally insoluble or less soluble in water. • Taste: Typically, not sweet. • State: Solid, often amorphous or fibrous. • Molecular Weight: High molecular weight due to long polymer chains.

Chemical Properties:

- Glycosidic Bonds: Long chains of monosaccharides connected by glycosidic bonds.
- Structural Diversity: Vary in length, branching, and types of monosaccharides.
- Hydrolysis: Can be hydrolyzed to simpler sugars, often requiring specific enzymes.
- Non-Reducing Nature: Usually do not have free aldehyde or ketone groups.
- Biological Functions: Serve as energy stores (e.g., starch, glycogen) and structural components (e.g., cellulose, chitin).
- Chemical Reactions: Less reactive than mono- and disaccharides; involved in biochemical processes like energy storage and structural support.

FUNCTIONS OF CARBOHYDRATES: -

Carbohydrates play several crucial roles, functioning as key sources of energy, structural components, and in cell signaling.

1. Energy Source: •

Carbohydrates are the body's primary and preferred source of energy.

They are broken down into glucose, which is used by cells for energy through a process called cellular respiration.

- Glucose can be used immediately or stored as glycogen in the liver and muscles for later use.

2. Structural Components: •

Certain carbohydrates are integral structural components of cells and tissues. •

For example, cellulose, a polysaccharide found in plant cell walls, provides structural support.

- In humans and animals, glycosaminoglycans (such as chondroitin and hyaluronic acid) are important for the structure and function of connective tissues and cartilage.

3. Cell Signaling and Recognition:

Carbohydrates are involved in cell signaling and cellular recognition processes.

- Glycoproteins and glycolipids, which are carbohydrates attached to proteins and lipids, are present on the cell surface and play a role in cell-to-cell communication and immune responses.
- These structures are critical in processes like immune cell recognition and the targeting of cells by viruses and bacteria.

4. Source of Dietary Fiber:

- Certain carbohydrates, like fiber, are not digestible by human enzymes but play a crucial role in maintaining gut health.
- Fiber aids in digestion, helps regulate blood sugar levels, and supports a healthy gut microbiome.

5. Energy Storage:

- In plants, carbohydrates are stored as starch, which can be broken down into glucose for energy during periods of low photosynthesis
- In animals, as mentioned earlier, excess glucose is stored as glycogen.

6. Precursors for Other Biochemical Substances:

- Carbohydrates can be converted into other essential substances, such as amino acids and fatty acids.
- They also contribute to the synthesis of nucleotides, which are the building blocks of DNA and RNA.